3 and 4 .Determinants and Matrices
medium

Let $a ,b ,c $ be such that $b + c \ne 0$  if

$\left| {\begin{array}{*{20}{c}}a&{a + 1}&{a - 1}\\{ - b}&{b + 1}&{b - 1}\\c&{c - 1}&{c + 1}\end{array}} \right| + \left| {\begin{array}{*{20}{c}}{a + 1}&{b + 1}&{c - 1}\\{a - 1}&{b - 1}&{c + 1}\\{{{\left( { - 1} \right)}^{n + 2}} \cdot a}&{{{\left( { - 1} \right)}^{n + 1}} \cdot b}&{{{\left( { - 1} \right)}^n} \cdot c}\end{array}} \right| = 0$ then $n$ equals to

A

Zero

B

any even integer

C

any odd integer

D

any integer

(AIEEE-2009)

Solution

$\left| {\begin{array}{*{20}{c}}
a&{a + 1}&{a – 1}\\
{ – b}&{b + 1}&{b – 1}\\
c&{c – 1}&{c + 1}
\end{array}} \right| + \left| {\begin{array}{*{20}{c}}
{{{\left( { – 1} \right)}^{n + 2}}a}&{a + 1}&{a – 1}\\
{{{\left( { – 1} \right)}^{n + 1}}b}&{b + 1}&{b – 1}\\
{{{\left( { – 1} \right)}^n}c}&{c – 1}&{c + 1}
\end{array}} \right|$

$ = \left| {\begin{array}{*{20}{c}}
{a + {{\left( { – 1} \right)}^{n + 2}}a}&{a + 1}&{a – 1}\\
{ – b + {{\left( { – 1} \right)}^{n + 1}}b}&{b + 1}&{b – 1}\\
{c + {{\left( { – 1} \right)}^n}c}&{c – 1}&{c + 1}
\end{array}} \right|$

$=0$ if $n$ is an obb integer.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.