3 and 4 .Determinants and Matrices
medium

$\left| {\,\begin{array}{*{20}{c}}{{a^2}}&{{b^2}}&{{c^2}}\\{{{(a + 1)}^2}}&{{{(b + 1)}^2}}&{{{(c + 1)}^2}}\\{{{(a - 1)}^2}}&{{{(b - 1)}^2}}&{{{(c - 1)}^2}}\end{array}\,} \right| = $

A

$4\,\left| {\,\begin{array}{*{20}{c}}{{a^2}}&{{b^2}}&{{c^2}}\\a&b&c\\1&1&1\end{array}\,} \right|$

B

$3\,\,\left| {\,\begin{array}{*{20}{c}}{{a^2}}&{{b^2}}&{{c^2}}\\a&b&c\\1&1&1\end{array}\,} \right|$

C

$2\,\,\left| {\,\begin{array}{*{20}{c}}{{a^2}}&{{b^2}}&{{c^2}}\\a&b&c\\1&1&1\end{array}\,} \right|$

D

None of these

Solution

(a) Apply ${R_2} – {R_3}$ and note that ${(x + y)^2} – {(x – y)^2} = 4xy$

$\therefore $ $\Delta = 4\,\left| {\,\begin{array}{*{20}{c}}{{a^2}}&{{b^2}}&{{c^2}}\\a&b&c\\{{{(a – 1)}^2}}&{{{(b – 1)}^2}}&{{{(c – 1)}^2}}\end{array}\,} \right|$

= $4\,\left| {\,\begin{array}{*{20}{c}}{{a^2}}&{{b^2}}&{{c^2}}\\a&b&c\\1&1&1\end{array}\,} \right|$

{Applying ${R_3} – ({R_1} – 2{R_2}) $}

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.