Using the property of determinants and without expanding, prove that:

$\left|\begin{array}{lll}b+c & q+r & y+z \\ c+a & r+p & z+x \\ a+b & p+q & x+y\end{array}\right|=2\left|\begin{array}{lll}a & p & x \\ b & q & y \\ c & r & z\end{array}\right|$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\Delta=\left|\begin{array}{lll}b+c & q+r & y+z \\ c+a & r+p & z+x \\ a+b & p+q & z+y\end{array}\right|$

$=\left|\begin{array}{ccc}b+c & q+r & y+z \\ c+a & r+p & z+x \\ a & p & x\end{array}\right|+\left|\begin{array}{ccc}b+c & q+r & y+z \\ c+a & r+p & z+x \\ b & q & y\end{array}\right|$

$=\Delta_{1}+\Delta_{2}(\text { say }).......(1)$

Now, $\Delta_{1}=\left|\begin{array}{ccc}b+c & q+r & y+z \\ c+a & r+p & z+x \\ a & p & x\end{array}\right|$

Applying $R_{1} \rightarrow R_{1}-R_{2},$ we have:

$\Delta_{1}=\left|\begin{array}{lll}b & q & y \\ c & r & z \\ a & p & x\end{array}\right|$

Applying $R_{1} \leftrightarrow R_{3}$ and $R_{2} \leftrightarrow R_{3},$ we have:

$\Delta_{1}=(-1)^{2}\left|\begin{array}{lll}a & p & x \\ b & q & y \\ c & r & z\end{array}\right|=\left|\begin{array}{lll}a & p & x \\ b & q & y \\ c & r & z\end{array}\right|......(2)$

$\Delta_{2}=\left|\begin{array}{ccc}b+c & q+r & y+z \\ c+a & r+p & z+x \\ b & q & y\end{array}\right|$

Applying $R_{1} \rightarrow R_{1}-R_{3},$ we have:

$\Delta_{2}=\left|\begin{array}{ccc}c & r & z \\ c+a & r+p & z+x \\ b & q & y\end{array}\right|$

Applying $R_{2} \rightarrow R_{2}-R_{1},$ we have:

$\Delta_{2}=\left|\begin{array}{lll}c & r & z \\ a & p & x \\ b & q & y\end{array}\right|$

Applying $R_{1} \leftrightarrow R_{2}$ and $R_{2} \leftrightarrow R_{3},$ we have:

$\Delta_{2}=(-1)^{2}\left|\begin{array}{lll}a & p & x \\ b & q & y \\ c & r & z\end{array}\right|=\left|\begin{array}{lll}a & p & x \\ b & q & y \\ c & r & z\end{array}\right|$

From $(1),(2),$ and $(3),$ we have:

$\Delta=2\left|\begin{array}{lll}a & p & x \\ b & q & y \\ c & r & z\end{array}\right|$

Hence, the given result is proved.

Similar Questions

By using properties of determinants, show that:

$\left|\begin{array}{ccc}0 & a & -b \\ -a & 0 & -c \\ b & c & 0\end{array}\right|=0$

Let $D_1 =$ $\left| {\,\begin{array}{*{20}{c}}a&b&{a + b}\\c&d&{c + d}\\a&b&{a - b}\end{array}\,} \right|$ and $D_2 =$ $\left| {\,\begin{array}{*{20}{c}}a&c&{a + c}\\b&d&{b + d}\\a&c&{a + b + c}\end{array}\,} \right|$ then the value of $\frac{{{D_1}}}{{{D_2}}}$ where $b \ne 0$ and $ad \ne bc$, is

By using properties of determinants, show that:

$\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|=(a+b)(b-c)(c-a)$

The number of positive integral solutions of the equation $\left| {\begin{array}{*{20}{c}}{{x^3} + 1}&{{x^2}y}&{{x^2}z}\\{x{y^2}}&{{y^3} + 1}&{{y^2}z}\\{x{z^2}}&{y{z^2}}&{{z^3} + 1}\end{array}} \right|$ $= 11$ is

Evaluate $\Delta=\left|\begin{array}{lll}1 & a & b c \\ 1 & b & c a \\ 1 & c & a b\end{array}\right|$