3 and 4 .Determinants and Matrices
medium

$\left| {\,\begin{array}{*{20}{c}}1&{1 + ac}&{1 + bc}\\1&{1 + ad}&{1 + bd}\\1&{1 + ae}&{1 + be}\end{array}\,} \right| = $

A

$1$

B

$0$

C

$3$

D

$a + b + c$

Solution

(b) ${C_3} \to {C_3} – {C_1}$और ${C_2} \to {C_2} – {C_1}$,

के द्वारा $\left| {\,\begin{array}{*{20}{c}}1&{ac}&{bc}\\1&{ad}&{bd}\\1&{ae}&{be}\end{array}\,} \right| = ab\left| {\,\begin{array}{*{20}{c}}1&c&c\\1&d&d\\1&e&e\end{array}\,} \right| = 0$,.

 $\{ \because {C_2} \equiv {C_3}\} $

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.