3.Trigonometrical Ratios, Functions and Identities
easy

$\frac{{\sin \theta }}{{1 - \cot \theta }} + \frac{{\cos \theta }}{{1 - \tan \theta }} = $

A

$0$

B

$1$

C

$\cos \theta - \sin \theta $

D

$\cos \theta + \sin \theta $

Solution

(d) $\frac{{\sin \theta }}{{1 – \cot \theta }} + \frac{{\cos \theta }}{{1 – \tan \theta }}$

$ = \frac{{\sin \theta \,.\,\sin \theta }}{{\,\sin \theta – \cos \theta }} + \frac{{\cos \theta \,.\cos \theta }}{{\cos \theta – \sin \theta }}$

$ = \frac{{({{\cos }^2}\theta – {{\sin }^2}\theta )}}{{(\cos \theta – \sin \theta )}} = \cos \theta + \sin \theta $.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.