- Home
- Standard 11
- Physics
1.Units, Dimensions and Measurement
medium
पास्कल-सैकण्ड निम्न में से किसकी विमा के समान है
Aबल
Bऊर्जा
Cदाब
Dश्यानता-गुणांक
Solution
Pascal is unit of pressure, hence its dimensional formula is
$\left[M L^{-1} T^{-2}\right]$
$\therefore$ Dimensional formula of Pascal-second is $\left[M L^{-1} T^{-1}\right]$
By the formula of coefficient of viscosity, we have
$\eta=\frac{F}{A(\Delta v / \Delta z)}$
where $F$ is force, $A$ is area and $\frac{\Delta v}{\Delta z}$ is velocity gradient.
$\therefore$ Dimensions of $\eta=\frac{\left[M L T^{-2}\right]}{\left[L^{2}\right]\left[L T^{-1} / L\right]}$
$=\left[M L^{-1} T^{-1}\right]$
Hence, Pascal-second has dimensions of coefficient of viscosity.
$\left[M L^{-1} T^{-2}\right]$
$\therefore$ Dimensional formula of Pascal-second is $\left[M L^{-1} T^{-1}\right]$
By the formula of coefficient of viscosity, we have
$\eta=\frac{F}{A(\Delta v / \Delta z)}$
where $F$ is force, $A$ is area and $\frac{\Delta v}{\Delta z}$ is velocity gradient.
$\therefore$ Dimensions of $\eta=\frac{\left[M L T^{-2}\right]}{\left[L^{2}\right]\left[L T^{-1} / L\right]}$
$=\left[M L^{-1} T^{-1}\right]$
Hence, Pascal-second has dimensions of coefficient of viscosity.
Standard 11
Physics
Similar Questions
सूची-$I$ का सूची-$II$ के साथ मिलान कीजिए।
List $-I$ | List $-II$ | ||
$A$. | श्यानता गुणांक | $I$. | $[M L^2T^{–2}]$ |
$B$. | पुश्ढ तनाव | $II$. | $[M L^2T^{–1}]$ |
$C$. | कोणीय संवेग | $III$. | $[M L^{-1}T^{–1}]$ |
$D$. | घूर्णन गतिज ऊर्जा | $IV$. | $[M L^0T^{–2}]$ |