$64$ drops of mercury each charged to a potential of $10\,V$. They are combined to form one bigger drop. The potential of this drop will be.......$V$ (Assume all the drops to be spherical)

  • A

    $160$

  • B

    $80$

  • C

    $10$

  • D

    $640$

Similar Questions

Three concentric spherical metallic shells $X , Y$ and $Z$ of radius $a , b$ and c respectively $[ a < b < c ]$ have surface charge densities $\sigma,-\sigma$ and $\sigma$, respectively. The shells $X$ and $Z$ are at same potential. If the radii of $X$ and $Y$ are $2\,cm$ and $3\,cm$, respectively.The radius of shell $Z$ is $......cm$.

  • [JEE MAIN 2023]

If a charged spherical conductor of radius $10\,cm$ has potential $V$ at a point distant $5\,cm$ from its centre, then the potential at a point distant $15\,cm$ from the centre will be

For given $\vec E = 2x\hat i + 3y\hat j$, find the potential at $(X, Y)$ if potential at origin is $5\, volts.$

A hemispherical bowl of mass $m$ is uniformly charged with charge density $'\sigma '$ . Electric potential due to charge distribution at a point $'A'$ is (which lies at centre of radius as shown).

Two point charges $4\,\mu C$ and $ - 1\,\mu C$ are kept at a distance of $3\ m$ from each other. What is the electric potential at the point where the electric field is zero?......$V$