$R$ ત્રિજ્યાના એક અવાહક ગોળાના કદ પર વિદ્યુતભાર $Q$ સમાન રીતે વિતરણ પામેલો છે. $b$ ત્રિજ્યા $(b > R)$ ની પાતળી ધાતુની કવચ વડે ગોળાની આજુબાજુ $-Q$ વિદ્યુતભાર છે. કવચ અને ગોળા વચ્ચેની જગ્યા હવાથી ભરેલી છે. નીચેના પૈકી કયો આલેખ વિદ્યુતક્ષેત્રને સંલગ્ન સાચી રજૂઆત દર્શાવે છે ?
એક ધન ધાતુના ગોળા પાસે $+ 3Q$ વિદ્યુતભાર છે. જે $-Q$ વિદ્યુતભાર વાળા સુવાહક ગોળીય કવચને સમકેન્દ્રિત છે. ગોળાની ત્રિજ્યા $a$ અને ગોળીય કવચની $b$ છે. $(b > a)$. કેન્દ્રથી $R$ અંતર આગળ $(a < R < b) \,f$ વિદ્યુતક્ષેત્ર ....... છે.
$R$ ત્રિજયા ધરાવતા વિદ્યુતભારીત વાહક ગોળીય કવચના કેન્દ્રથી $\frac{{3R}}{2}$ અંતરે વિદ્યુતક્ષેત્ર $E\; V/m$ છે. તેના કેન્દ્રથી $\frac{R}{2}$ અંતરે વિદ્યુતક્ષેત્ર કેટલું થાય?
$10\ cm$ ત્રિજયા ધરાવતા ગોળાથી $20\ cm$ અંતરે વિદ્યુતક્ષેત્ર $100\ V/m$ છે.તો કેન્દ્રથી $3\ cm$ અંતરે વિદ્યુતક્ષેત્ર કેટલા .....$V/m$ થાય?
$6\,m$ ત્રિજ્યા ધરાવતા ગોળાની કદ વિદ્યુતભાર ઘનતા $2\,\mu\,C / cm ^3$ છે. ગોળાની સપાટીમાંથી બહાર આવતી પ્રતિ એકમ પૃષ્ઠ ક્ષેત્રફળ દીઠ બળ રેખાઓની સંખ્યા $..........\times 10^{10} NC ^{-1}$ હશે.
[Given : Permittivity of vacuum $\left.\epsilon_{0}=8.85 \times 10^{-12} C ^{2} N ^{-1}- m ^{-2}\right]$
$R$ ત્રિજયાનો નકકર ગોળા પર સમાન રીતે વિદ્યુતભાર ફેલાયેલો છે.તો વિદ્યુતક્ષેત્ર $(E)$ અને કેન્દ્રથી અંતર $r$ વચ્ચેનો સંબંધ શું થાય? (r < R)