- Home
- Standard 12
- Physics
એક પાતળી અર્ધ વર્તૂળ રીંગની ત્રિજ્યા $r$ છે. અને તેના પર ધન વિદ્યુત ભાર $q$ સમાન રીતે વિતરણ પામેલો છે કેન્દ્ર $O$ આગળ ચોખ્ખું ક્ષેત્ર $\vec E$......... છે.

$\frac{q}{{2{\pi ^2}{\varepsilon _0}{r^2}}}\,\,\hat j$
$\frac{q}{{4{\pi ^2}{\varepsilon _0}{r^2}}}\,\,\hat j$
$ - \frac{q}{{4{\pi ^2}{\varepsilon _0}{r^2}}}\,\,\hat j$
$ - \frac{q}{{2{\pi ^2}{\varepsilon _0}{r^2}}}\,\,\hat j$
Solution
Given,
$k =\frac{1}{4 \pi \varepsilon_0}$ and $\lambda=\frac{ q }{\pi R } \quad$ (where, $\lambda=$ linear charge density)
$\vec{E}=\int_{-\pi / 2}^{\pi / 2} d E \cos \theta=2 \int_0^{\pi / 2} \frac{ k (\lambda R d \theta)}{R^2} \cos \theta(-j)$
$\Rightarrow \vec{E}=2 \times\left(\frac{1}{4 \pi \varepsilon_0}\right)\left(\frac{q}{\pi R}\right) \frac{R}{R^2}[\sin \theta]_0^{\pi / 2}(-\hat{j})$
$\Rightarrow \frac{q}{2 \pi^2 \varepsilon_0 R^2}[\sin 90-\sin 0](-\hat{j})$
$\Rightarrow \vec{E}=\frac{q}{2 \pi^2 \varepsilon_0 R^2}(-j)$
Hence, Electric field at point $O$ is $\frac{ q }{2 \pi^2 \varepsilon_0 R ^2}(- j )$