- Home
- Standard 12
- Physics
$1\ g$ અને $10^{-8} \,C$ વિદ્યુતભાર વાળો એક બોલ બિંદુ $A \,(V_A = 600 \,V)$ થી જેનું સ્થિતિમાન શૂન્ય હોય તેવા બિંદુ $B$ તરફ ગતિ કરે છે. $B$ બિંદુ આગળ બોલનો વેગ $20\, cm\, s^{-1}$ છે. બિંદુ $A$ આગળ બોલનો વેગ.......$cm/s$ માં શોધો.
$1.67$
$16.7$
$15$
$10$
Solution

${v_2}\,\, = \,\,20\,cm\,\, = \,\,0.2\,\,m/s,\,\,\,{v_1}\, = \,\,?$
$\Delta K\,\, = \,\, – q(\Delta \,V)$
$\frac{1}{2}\,mv_2^2\, – \,\,\frac{1}{2}\,mv_1^2\,\, = \,\, – \,\,q({V_B}\, – \,\,{V_A})$
$\frac{1}{2}\,\, \times \,\,{10^{ – 3}}[{(0.2)^2}\, – \,\,V_1^2]\,\, = \,\, – \,{10^{ – 8}}\,(0\,\, – \,\,600)$
${(0.2)^2}\,\, – \,\,v_1^2\, = \,\,12\,\, \times \,\,{10^{ – 3}}\,\,\, = \,\,\,4\,\, \times \,\,{10^{ – 2}}\, – \,\,v_1^2\,\, = \,\,1.2\,\, \times \,\,{10^{ – 2}}$
$v_1^2\, = \,\,2.8\,\, \times \,\,{10^{ – 2}}\,\,\,\therefore \,\,\,\,{v_1}\,\, = \,\,1.67\,\, \times \,\,{10^{ – 1}}\,\,m/s$
${v_1}\,\, = \,\,1.67\,\, \times \,\,{10^{ – 1}}\, \times \,\,{10^2}\,\, = \,\,16.7\,\,cm/s$