English
Hindi
3-1.Vectors
medium

બે સદીશો $\mathop A\limits^ \to  \,\, = \,\,3\hat i\,\, + \;\,\hat j\,\,$ અને  $\mathop B\limits^ \to  \,\, = \,\,\hat j\,\, + \,2\hat k$ આપેલા છે . આ બે સદીશો માટે  $\mathop A\limits^ \to $ નો $\mathop B\limits^ \to $ ની સાપેક્ષે ઘટક સદીશના સ્વરૂપમાં શોધો.

A

$\frac{1}{5}\,\,\left( {\,\hat j\,\, + \;\,\hat k} \right)$

B

$\frac{1}{5}\,\,\left( {\,2\hat j\,\, + \;\,2\hat k} \right)$

C

$\frac{1}{3}\,\,\left( {\,3\hat j\,\, + \;\,2\hat k} \right)$

D

$\frac{1}{5}\,\,\left( {\,\hat j\,\, + \;\,2\hat k} \right)$

Solution

$\mathop A\limits^ \to  $ નો $\mathop B\limits^ \to  $ સાથેનો ઘટક

$\, = \,\,\left( {\frac{{\,\mathop A\limits^ \to  .\,\mathop B\limits^ \to  \,}}{B}} \right)\,\hat B\,\, = \,\,\left( {\frac{{\,\mathop A\limits^ \to  .\,\mathop B\limits^ \to  }}{B}} \right)\,\frac{{\mathop B\limits^ \to  }}{B}\,$

$\, = \,\,\left[ {\frac{{\left( {3\hat i\,\, + \;\,\hat j} \right)\,\,\left( {\hat j\,\, + \;\,2\hat k} \right)}}{{\sqrt 5 }}} \right]\,\,\frac{{\left( {\hat j\,\, + \;\,2\hat k} \right)}}{{\sqrt 5 }}$

$ = \,\,\frac{1}{5}\,\,\left( {\hat j\,\, + \;\,2\hat k} \right)$

 

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.