3-1.Vectors
hard

ત્રણ સદિશો $\vec{A}=(-x \hat{i}-6 \hat{j}-2 \hat{k}), \vec{B}=(-\hat{i}+4 \hat{j}+3 \hat{k})$ અને $\vec{C}=(-8 \hat{i}-\hat{j}+3 \hat{k})$ માટે જો $\vec{A} \cdot(\vec{B} \times \vec{C})=0$ હોય તો $x$ નું મૂલ્ચ. . . . . .છે.

A

$2$

B

$4$

C

$6$

D

$8$

(JEE MAIN-2024)

Solution

$\vec{B} \times \vec{C}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ -1 & 4 & 3 \\ -8 & -1 & 3\end{array}\right|=15 \hat{i}-21 \hat{j}+33 \hat{k}$

$\vec{A} \cdot(\vec{B} \times \vec{C})=(-x \hat{i}-6 \hat{j}-2 \hat{k}) \cdot(15 \hat{i}-21 \hat{j}+33 \hat{k})$

$0=-15 x+126-66$

$15 x=60$

$x=4$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.