$\vec P $ અને $\vec Q $ બે સદીશોનું પરિણામી $\vec R $ છે. જો $\vec Q $ બમણું હોય તો પરિણામી સદિશ એ $\vec P $ ને લંબ હોય છે તો $\vec R $ નું મૂલ્ય કેટલું થાય ?
$\frac{{{P^2}\,\, - \,\,{Q^2}}}{{2PQ}}$
$Q$
$\frac{P}{Q}$
$\frac{{P\,\, + \;\,Q}}{{P\,\, - \,\,Q}}$
$A$ અને $\frac{A}{2}$ નાં મૂલ્યો ધરાવતા બે બળો એકબીજાને લંબ છે. તેનું પરિણામીનું મૂલ્ય ...... છે.
જો $| A + B |=| A |+| B |$ હોય તો સદિશ $ \overrightarrow A $ અને $ \overrightarrow B $ વચ્ચેનો ખૂણો કેટલો હોવો જોઈએ?
$F$ અને $2F$ બળોનું પરિણામી એ $F$ ને લંબ છે.તો બે બળ વચ્ચેનો ખૂણો ........ $^o$ હશે.
જો કોઈ ભૌતિક રાશિનું મૂલ્ય શૂન્ય હોય, તો તે સદિશ હોઈ શકે ? યોગ્ય ઉદાહરણ આપો.
સદિશ $\overrightarrow a $ ને $d\theta $ખૂણે ફેરવતાં $|\Delta \overrightarrow a |$ અને $\Delta a$ મેળવો.