$4$ વખત સિકકો ઊછાળતા ઓછામાં ઓછા $1$ વખત કાંટો આવવાની સંભાવના કેટલી?
$\frac{{15}}{{16}}$
$\frac{1}{{16}}$
$\frac{1}{4}$
આમાંથી એકેય નહિ.
માંગેલ સંભાવના $ = 1 – {\left( {\frac{1}{2}} \right)^4} = \frac{{15}}{{16}}.$
ત્રણ સિક્કાઓને એકવાર ઉછાળવામાં આવે છે. જો ત્રણ છાપ દેખાય તેને ઘટના $A$ , બે છાપ અને એક કાંટો દેખાય તેને ઘટના $B$, ત્રણે કાંટા દેખાય તેને ઘટના $C$ અને પહેલા સિક્કા ઉપર છાપ દેખાય તેને ઘટના $D$ દ્વારા દર્શાવવામાં આવે છે. કઈ ઘટનાઓ પ્રાથમિક છે ?
સરખી રીતે ચીપેલાં $52$ પત્તાંની એક થોકડીમાંથી યાદચ્છિક રીતે એક પતું ખેંચવામાં આવે છે. પતું ચોકટનું ન હોય તેની સંભાવના મેળવો
જો $A$ અને $B$ બે સ્વત્રંત ઘટનાઓ છે કે જેથી $P\,(A \cap B') = \frac{3}{{25}}$ અને $P\,(A' \cap B) = \frac{8}{{25}},$ તો $P(A) = $
એક થેલામાં $9$ તકતી છે. તે પૈકી $4$ લાલ રંગની, $3$ ભૂરા રંગની અને $2$ પીળા રંગની છે. પ્રત્યેક તકતી આકા૨ અને માપમાં સમરૂપ છે. થેલામાંથી એક તકતી યાદચ્છિક રીતે કાઢવામાં આવે છે. જો તે પીળા રંગની હોય હોય, તે અનુસાર કાઢવામાં આવેલ તકતીની સંભાવના શોધો.
ત્રણ સિક્કા એક વાર ઉછાળવામાં આવે છે. નીચે આપેલ ઘટનાની સંભાવના શોધો.
એક પણ છાપ નહિ.
Confusing about what to choose? Our team will schedule a demo shortly.