બે ઘટનાઓ $A$ અને $B$ ની સંભાવનાઓ અનુક્રમે $0.25$ અને $0.50$ છે. $A$ અને $B$ બંને એક સાથે થવાની સંભાવના $0.14$ છે. તો $A$ અને $B$ માંથી એક પણ ઘટના ન બને તેની સંભાવના કેટલી?
$0.39$
$0.25$
$0.904$
આમાંથી એકેય નહિ.
ધારો કે ઘટનાઓ $A$ અને $B $ માટે, $P\left( {\overline {A \cup B} } \right) = \frac{1}{6}\;,P\left( {A \cap B} \right) = \frac{1}{4}$ અને $P\left( {\bar A} \right) = \frac{1}{4}$ છે,તો ઘટનાઓ $A$ અને $B$. . . . . .
ઘટનાઓ $E$ અને $F$ એવા પ્રકારની છે કે $P ( E )=\frac{1}{4}$, $P ( F )=\frac{1}{2}$ અને $P(E$ અને $F )=\frac{1}{8},$ તો $P(E$ નહિ $F$ નહિ) શોધો.
નીચે આપેલા કોષ્ટકમાં ખાલી જગ્યા ભરો :
$P(A)$ | $P(B)$ | $P(A \cap B)$ | $P (A \cup B)$ |
$0.35$ | ........... | $0.25$ | $0.6$ |
ઘટનાઓ $A$ અને $B$ એવા પ્રકારની છે કે $P(A) = 0.42, P(B) = 0.48$ અને $P(A$ અને $B) = 0.16$.$ P(A-$ નહિ) શોધો.
ચકાસો કે નીચેની સંભાવનાઓ $P(A)$ અને $P(B)$ સુસંગત રીતે વ્યાખ્યાયિત છે.
$P ( A )=0.5$, $ P ( B )=0.4$, $P ( A \cap B )=0.8$