એક થેલામાં $10$ સફેદ અને $15$ લાલ દડા છે. જો તે પૈકી એક પછી એક બે દડા પસંદ કરવામાં આવે તો પૈકી પહેલો લાલ અને બીજો સફેદ હોવાની સંભાવના કેટલી થાય ?
$1/3$
$1/2$
$1/4$
$1/5$
બે પાસાઓ ફેંકવામાં આવે છે. ઘટનાઓ $A, B$ અને $C$ નીચે આપેલ છે.
$A :$ પહેલા પાસા ઉપર યુગ્મ સંખ્યા મળે છે.
$B:$ પહેલા પાસા ઉપર અયુગ્મ સંખ્યા મળે છે.
$C :$ પાસાઓ ઉપર મળતી સંખ્યાઓનો સરવાળો $5$ કે $5$ થી ઓછો છે.
નીચે આપેલ ઘટનાઓ વર્ણવો : $A'$
એક થેલામાં $9$ તકતી છે. તે પૈકી $4$ લાલ રંગની, $3$ ભૂરા રંગની અને $2$ પીળા રંગની છે. પ્રત્યેક તકતી આકા૨ અને માપમાં સમરૂપ છે. થેલામાંથી એક તકતી યાદચ્છિક રીતે કાઢવામાં આવે છે. જો તે પીળા રંગની હોય હોય, તે અનુસાર કાઢવામાં આવેલ તકતીની સંભાવના શોધો.
રજાઓમાં વીણાએ ચાર શહેરો $A, B, C$ અને $D$ ની યાદચ્છિક ક્રમમાં યાત્રા કરી છે. શું સંભાવના છે કે એણે $A$ ની યાત્રા પહેલાં અને $B$ ની છેલ્લે યાત્રા કરી ?
ત્રણ સિક્કા એક વાર ઉછાળવામાં આવે છે. નીચે આપેલ ઘટનાની સંભાવના શોધો.
વધુમાં વધુ $2$ છાપ મળે.
એક પાસાની બે બાજુઓમાંથી પ્રત્યેક પર સંખ્યા $“1”$ દર્શાવેલ છે, ત્રણ બાજુઓમાં પ્રત્યેક પર સંખ્યા $“2”$ દર્શાવેલ છે અને એક બાજુ પર સંખ્યા $“3”$ છે. જો આ પાસાને એકવાર ફેંકવામાં આવે તો નીચે આપેલ શોધો : $P(1$ અથવા $3)$