English
Hindi
10-2. Parabola, Ellipse, Hyperbola
hard

જો $\alpha$ અને $\beta$ એ ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ની નાભિજીવાના અંત્યબિંદુઓના ઉત્કેન્દ્રીકરણ હોય, તો $tan\ \alpha /2. tan\ \beta/2 = ....$

A

$\frac{{e\,\, - \,\,1}}{{e\,\, + \;\,1}}$

B

$\frac{{1\,\, - \,\,e}}{{1\,\, + \;\,e}}$

C

$\frac{{e\,\, + \,\,1}}{{e\,\, - \;\,1}}$

D

$\frac{{e\,\, - \,\,1}}{{1\,\, + \;\,e}}$

Solution

$'\alpha '$ અને $'\beta '\,$ બિંદુઓને  જોડતી રેખાનું સમીકરણ

$\frac{x}{a}\,\,\cos \,\,\frac{{\alpha \,\, + \;\,\beta }}{2}\,\, + \,\,\frac{y}{b}\sin \,\,\frac{{\alpha \,\, + \;\,\beta }}{2}\,\, = \,\,\cos \,\,\frac{{\alpha \,\, – \,\,\beta }}{2}$

જો તે નાભિજીવા હોય, તો તે નાભિકેન્દ્ર $\left( {ae,\,\,0} \right)\,$ માંથી પસાર થાય,તેથી

$e\,\,\cos \,\,\frac{{\alpha \,\, + \;\,\beta }}{2}\,\, = \,\cos \,\frac{{\alpha \,\, – \,\,\beta }}{2}\,\, \Rightarrow \,\,\,\frac{{\cos \,\,\frac{{\alpha \,\, – \,\,\beta }}{2}}}{{\cos \,\,\frac{{\alpha \,\, + \;\,\beta }}{2}}}\,\, = \,\,\frac{e}{1}\,\,$

$ \Rightarrow \,\,\frac{{\cos \,\,\frac{{\alpha \,\, – \,\,\beta }}{2}\,\, – \,\,\cos \,\,\,\frac{{\alpha \, + \,\,\beta }}{2}}}{{\cos \,\,\frac{{\alpha \,\, – \,\,\beta }}{2}\,\, + \;\,\cos \,\,\frac{{\alpha \,\, + \;\,\beta }}{2}}}\,\, = \,\,\frac{{e\,\, – \,\,1}}{{e\,\, + \;\,1}}\,\,$

$ \Rightarrow \,\,\frac{{2\,\sin \,\,\alpha /2\,\,\sin \,\,\beta /2}}{{2\,\,\cos \,\,\alpha /2\,\,\cos \,\,\beta /2}}\,\, = \,\,\frac{{e\,\, – \,\,1}}{{e\,\, + \;\,1}}\,\, \Rightarrow \,\,\tan \,\,\frac{\alpha }{2}\,\,\tan \,\,\frac{\beta }{2}\,\, = \,\,\frac{{e\,\, – \,\,1}}{{e\,\, + \;\,1}}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.