બિંદુ $(3, -2)$ આગળ ઉપવલય $4x^2 + 9y^2 = 36$ ના સ્પર્શકનું સમીકરણ શોધો.
$\frac{x}{3}\,\, - \,\,\frac{y}{2}\,\, = \,\,\,1$
$\frac{x}{4}\,\, - \,\,\frac{y}{3}\,\, = \,\,\,1$
$\frac{{2x}}{3}\,\, - \,\,\frac{{3y}}{2}\,\, = \,\,\,1$
$\frac{x}{2}\,\, - \,\,\frac{{3y}}{2}\,\, = \,\,\,1$
જો બિંદુઓ $A$ અને $B$ ના યામો અનુક્રમે $(\sqrt{7}, 0)$ અને $(-\sqrt{7}, 0)$ હોય અને વક્ર $9 x^{2}+16 y^{2}=144$ પરનું કોઈ બિંદુ $P$ આવેલ હોય તો $PA + PB$ ની કિમત શોધો
પ્રથમ ચરણમાં રેખા $y=m x$ અને ઉપવલય $2 x^{2}+y^{2}=1$ બિંદુ $\mathrm{P}$ આગળ છેદે છે . જો બિંદુ $P$ આગળનો અભિલંભ અક્ષોને $\left(-\frac{1}{3 \sqrt{2}}, 0\right)$ અને $(0, \beta)$ આગળ છેદે છે તો $\beta$ મેળવો.
આપેલ ઉપવલય માટે નાભિના યામ, શિરોબિંદુઓ તથા પ્રધાન અક્ષ તથા ગૌણ અક્ષની લંબાઈ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ શોધોઃ
$16 x^{2}+y^{2}=16$
બિંદુ $(4,3)$ તથા ઉપવલય $x^{2}+2 y^{2}=4$ પરનાં બિંદુુઓને જોડતી રૈખાખંડનાં મધ્યબિંદુનો બિંદુપથ એ$\dots\dots\dots$ ઉત્કેન્દ્રતાવાળો ઉપવલય છે.
જો વક્રો $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ અને $x^{2}+y^{2}=12$ ના સામાન્ય સ્પર્શકની ઢાળ $m$ હોય, તો $12\,m^{2}=\dots\dots\dots$