બિંદુ $(3, -2)$ આગળ ઉપવલય $4x^2 + 9y^2 = 36$ ના સ્પર્શકનું સમીકરણ શોધો.
$\frac{x}{3}\,\, - \,\,\frac{y}{2}\,\, = \,\,\,1$
$\frac{x}{4}\,\, - \,\,\frac{y}{3}\,\, = \,\,\,1$
$\frac{{2x}}{3}\,\, - \,\,\frac{{3y}}{2}\,\, = \,\,\,1$
$\frac{x}{2}\,\, - \,\,\frac{{3y}}{2}\,\, = \,\,\,1$
જો $A = [(x,\,y):{x^2} + {y^2} = 25]$ અને $B = [(x,\,y):{x^2} + 9{y^2} = 144]$, તો $A \cap B$ માં . .. બિંદુ હોય .
$x-$ અક્ષ મુખ્યઅક્ષ અને ઉંગમબિંદુ કેન્દ્ર હોય તેવા ઉપવલયને ધ્યાનમાં લો. જો તેની ઉત્કેન્દ્ર્તા $\frac{3}{5}$ અને નાભીઓ વચ્ચેનું અંતર $6$ હોય તો ઉપવલયના શિરોબિંદુઓથી રચાતા ચતુષ્કોણનું ક્ષેત્રફળ ચો.એકમમાં મેળવો.
બિંદુ $(-3,-5)$ અને ઉપવલય $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ પરના બિંદુને જોડતા રેખાખંડના મધ્યબિંદુના બિંદુપથનું સમીકરણ મેળવો.
બિંદુ $(4,3)$ તથા ઉપવલય $x^{2}+2 y^{2}=4$ પરનાં બિંદુુઓને જોડતી રૈખાખંડનાં મધ્યબિંદુનો બિંદુપથ એ$\dots\dots\dots$ ઉત્કેન્દ્રતાવાળો ઉપવલય છે.
ઉપવલય $\frac{{{x^2}}}{6}\,\, + \;\,\frac{{{y^2}}}{2}\, = \,\,1$ પરના બિંદુનું કેન્દ્રથી અંતર $2$ હોય તો તેનો ઉતકેન્દ્રીકોણ (Eccentric Angle) મેળવો.