English
Hindi
3-2.Motion in Plane
hard

$m$ દળ અને $l$ લંબાઇ ધરાવતા સળિયાને એક છેડાને અનુલક્ષીને $\omega $ કોણીય ઝડપથી ભ્રમણ કરાવતાં અક્ષથી $x$ અંતરે તણાવબળ કેટલું હશે?

A$\frac{1}{2}\;m{\omega ^2}x$
B$\frac{1}{2}\;m{\omega ^2}\frac{{{x^2}}}{l}$
C$\frac{1}{2}m{\omega ^2}l\left( {1 - \frac{x}{l}} \right)$
D$\frac{1}{2}\frac{{m{\omega ^2}}}{l}[{l^2} - {x^2}]$

Solution

$dT = dm\,{\omega ^2}x\, = \left( {\frac{m}{l}} \right)\,dx\,.\,{\omega ^2}x\, = \frac{{m\,{\omega ^2}}}{l}\, [x \,d \,x]$ 
$\int\limits_x^l {dT} = \frac{{m\,{\omega ^2}}}{l}\int\limits_x^l {x\,dx} $
$T = \frac{{m{\omega ^2}}}{l}\left[ {\frac{{{x^2}}}{2}} \right]_x^l$
$\therefore T = \frac{{m\,{\omega ^2}}}{{2l}}\left[ {\,{l^2} – {x^2}} \right]$
Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.