$P (x, y)$ moves such that the area of the triangle formed by $P, Q (a , 2 a)$ and $R (- a, - 2 a)$ is equal to the area of the triangle formed by $P, S (a, 2 a)\,\,\, \&\,\, \,T (2 a, 3 a)$. The locus of $'P'$ is a straight line given by :
$3x - y = a$
$(A)$ or $(C)$ both
$y = 2ax$
$5x - 3y + a = 0$
The pair of straight lines $x^2 - 4xy + y^2 = 0$ together with the line $x + y + 4 = 0$ form a triangle which is :
The line $2x + 3y = 12$ meets the $x$-axis at $A$ and $y$-axis at $B$. The line through $(5, 5)$ perpendicular to $AB$ meets the $x$- axis , $y$ axis and the $AB$ at $C,\,D$ and $E$ respectively. If $O$ is the origin of coordinates, then the area of $OCEB$ is
The diagonals of a parallelogram $PQRS$ are along the lines $x + 3y = 4$ and $6x - 2y = 7$. Then $PQRS$ must be a
Three lines $x + 2y + 3 = 0 ; x + 2y - 7 = 0$ and $2x - y - 4 = 0$ form the three sides of two squares. The equation to the fourth side of each square is
The base of an equilateral triangle with side $2 a$ lies along the $y$ -axis such that the mid-point of the base is at the origin. Find vertices of the triangle.