In a rectangle $A B C D$, the coordinates of $A$ and $B$ are $(1,2)$ and $(3,6)$ respectively and some diameter of the circumscribing circle of $A B C D$ has equation $2 x-y+4=0$. Then, the area of the rectangle is
$16$
$2 \sqrt{10}$
$2 \sqrt{5}$
$20$
The diagonals of a parallelogram $PQRS$ are along the lines $x + 3y = 4$ and $6x - 2y = 7$. Then $PQRS$ must be a
One side of a square is inclined at an acute angle $\alpha$ with the positive $x-$axis, and one of its extremities is at the origin. If the remaining three vertices of the square lie above the $x-$axis and the side of a square is $4$, then the equation of the diagonal of the square which is not passing through the origin is
In an isosceles triangle $ABC, \angle C = \angle A$ if point of intersection of bisectors of internal angles $\angle A$ and $\angle C$ divide median of side $AC$ in $3 : 1$ (from vertex $B$ to side $AC$), then value of $cosec \ \frac{B}{2}$ is equal to
Locus of the image of point $ (2,3)$ in the line $\left( {2x - 3y + 4} \right) + k\left( {x - 2y + 3} \right) = 0,k \in R$ is a:
Area of the parallelogram whose sides are $x\cos \alpha + y\sin \alpha = p$ $x\cos \alpha + y\sin \alpha = q,\,\,$ $x\cos \beta + y\sin \beta = r$ and $x\cos \beta + y\sin \beta = s$ is