Gujarati
Hindi
7.Binomial Theorem
normal

$(2n + 1) (2n + 3) (2n + 5) ....... (4n - 1)$ is equal to :

A

$\frac{{(4n)\,\,!}}{{{2^n}\,.\,\,(2n)\,\,!\,\,(2n)\,\,!}}$

B

$\frac{{(4n)\,\,!\,\,\,n\,\,!}}{{{2^n}\,.\,\,(2n)\,\,!\,\,(2n)\,\,!}}$

C

$\frac{{(4n)\,\,!\,\,\,n\,\,!}}{{(2n)\,\,!\,\,(2n)\,\,!}}$

D

$\frac{{(4n)\,\,!\,\,\,n\,\,!}}{{{2^n}\,\,!\,\,(2n)\,\,!}}$

Solution

$E = (2 n + 1) (2 n + 3) (2 n + 5) ……(4 n – 1)$

Multiply numerator and denominator by $(2 n + 2) (2 n + 4) …… (4 n)$ & also by $(2 n ) !$ .

$E = \frac{{(2\,n)\,\,!\,\,\,(2\,n\,\, + \,\,1)\,\,(2\,n\,\, + \,\,2)\,\,(2\,n\,\, + \,\,3)\,\,……..\,\,(4\,n\, – \,1)\,\,.\,\,4\,n}}{{(2\,n)\,\,!\,\,\,(2\,n\, + \,2)\,\,(2\,n\, + \,4)\,\,……..\,\,(2\,n\, + \,2\,n)}}$

$= \frac{{(4\,n)\,\,!\,\,\,\,\,\,\,\,\,\,\,\, \times \,\,\,\,\,\,(n\,)\,\,!}}{{(2\,n)\,\,!\,\,\,{2^n}\,\,\left[ {(n\,\, + \,\,1)\,\,(n\,\, + \,\,2)\,\,……\,\,(2\,n)\,} \right]\,\,n\,\,!}}$ $= \frac{{(n\,\,!)\,\,.\,\,(4\,n)\,\,!}}{{{2^n}\,\,.\,\,{{\left( {(2\,n)\,\,!} \right)}^2}}}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.