7.Binomial Theorem
hard

Sum of odd terms is $A$ and sum of even terms is $B$ in the expansion ${(x + a)^n},$ then

A

$AB = \frac{1}{4}{(x - a)^{2n}} - {(x + a)^{2n}}$

B

$2AB = {(x + a)^{2n}} - {(x - a)^{2n}}$

C

$4AB = {(x + a)^{2n}} - {(x - a)^{2n}}$

D

None of these

Solution

(c)${(x + a)^n} = {\,^n}{C_0}{x^n} + {^n}{C_1}{x^{n – 1}}a + {\,^n}{C_2}{x^{n – 2}}{a^2} + {\,^n}{C_3}{x^{n – 3}}{a^3} + …..$

But by the condition,

$A = {\,^n}{C_0}{x^n} + {\,^n}{C_2}{x^{n – 2}}{a^2} + {\,^n}{C_4}{x^{n – 4}}{a^4} + ……$

and $B = {\,^n}{C_1}{x^{n – 1}}a + {\,^n}{C_3}{x^{n – 3}}{a^3} + ……$

Hence $AB = \frac{1}{4}\left\{ {{{(x + a)}^{2n}} – {{(x – a)}^{2n}}} \right\}$

or $4AB = {(x + a)^{2n}} – {(x – a)^{2n}}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.