Sum of odd terms is $A$ and sum of even terms is $B$ in the expansion ${(x + a)^n},$ then
$AB = \frac{1}{4}{(x - a)^{2n}} - {(x + a)^{2n}}$
$2AB = {(x + a)^{2n}} - {(x - a)^{2n}}$
$4AB = {(x + a)^{2n}} - {(x - a)^{2n}}$
None of these
If the sum of the coefficients of all the positive even powers of $x$ in the binomial expansion of $\left(2 x^{3}+\frac{3}{x}\right)^{10}$ is $5^{10}-\beta \cdot 3^{9}$, then $\beta$ is equal to
The sum of coefficients in the expansion of ${(x + 2y + 3z)^8}$ is
The value of $\sum\limits_{n = 1}^\infty {\frac{{^n{C_0} + ...{ + ^n}{C_n}}}{{^n{P_n}}}} $ is
Co-efficient of $\alpha ^t$ in the expansion of,
$(\alpha + p)^{m - 1} + (\alpha + p)^{m - 2} (\alpha + q) + (\alpha + p)^{m - 3} (\alpha + q)^2 + ...... (\alpha + q)^{m - 1}$
where $\alpha \ne - q$ and $p \ne q$ is :
$\mathrm{b}=1+\frac{{ }^1 \mathrm{C}_0+{ }^1 \mathrm{C}_1}{1 !}+\frac{{ }^2 \mathrm{C}_0+{ }^2 \mathrm{C}_1+{ }^2 \mathrm{C}_2}{2 !}+\frac{{ }^3 \mathrm{C}_0+{ }^3 \mathrm{C}_1+{ }^3 \mathrm{C}_2+{ }^3 \mathrm{C}_3}{3 !}+\ldots$
Let $\mathrm{a}=1+\frac{{ }^2 \mathrm{C}_2}{3 !}+\frac{{ }^3 \mathrm{C}_2}{4 !}+\frac{{ }^4 \mathrm{C}_2}{5 !}+\ldots$, Then $\frac{2 b}{a^2}$ is equal to.........................