Gujarati
Hindi
12.Kinetic Theory of Gases
normal

$1\,\, gm$ water at $100\,^oC$and $10^5\,\,Pa$ pressure converts into $1841\,\,cm^3$ of steam at constant temperature and pressure. If latent heat of vapourization of water is $2250 \,\,J/gm$. The change in internal energy of water in this process is ..... $J$

A

$0$

B

$2250$

C

$2066$

D

none

Solution

mass of water $=1 gm =10^{-3}\,kg$

Pressure $=10^5 Pa =10^5\,N – m ^2$

volume of steam $=1841\,cm ^3=1841 \times 10^{-6}\,m ^3$

Latent heat of $=2250\,J / gm$ vahorization

$\because \quad$ volume of water $=\frac{\text { mass }}{\text { density }} \quad$ (Swater $=10^3 \frac{ g }{ m }$ )

$=\frac{10^{-3}}{10^3}=10^{-6} m ^3$

Change in internal energy is given by,

$d u =d \theta-p d v$

$d u =m L-P\left(V_b-t_i\right)$

$=10^{-3}\left(2250 \times 10^3\right)-10^5\left(1841 \times 10^{-6}-1 \times 10^{-6}\right.$

$=2250-184$

$=2066\,J$

So change in internal energy, is $2066\,J$.

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.