Gujarati
Hindi
4-1.Newton's Laws of Motion
hard

$A$ flexible chain of weight $W$ hangs between two fixed points $A$ & $B$ which are at he same horizontal level. The inclination of the chain with the horizontal at both the points of support is $\theta$ . What is the tension of the chain at the mid point? 

A

$\frac{W}{2}. cosec \theta$

B

$\frac{W}{2} . tan \theta$

C

$\frac{W}{2} cot \theta$

D

none

Solution

$\mathrm{T} \sin \theta=\frac{\mathrm{W}}{2}$

$\therefore \quad \mathrm{T}=\frac{\mathrm{W}}{2 \sin \theta}$

Also, $\mathrm{T} \cos \theta=\mathrm{T}_{0}$

$\therefore \quad \mathrm{T}_{0}=\mathrm{T} \cos \theta$

$\mathrm{T}_{0}=\frac{\mathrm{W}}{2 \sin \theta} \cos \theta$

$=\frac{W}{2} \cot \theta$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.