$A$ block of mass $m$ moving with a velocity $v_0$ on a smooth horizontal surface strikes and compresses a spring of stiffness $k$ till mass comes to rest as shown in the figure. This phenomenon is observed by two observers:
$A$: standing on the horizontal surface
$B$: standing on the block To an observer
$A$, the work done by the normal reaction $N$ between the block and the spring on the block is
zero
$ - \frac{1}{2}mv_0^2$
$ + \frac{1}{2}mv_0^2$
none of these
The figure shows a mass $m$ on a frictionless surface. It is connected to rigid wall by the mean of a massless spring of its constant $k$. Initially, the spring is at its natural position. If a force of constant magnitude starts acting on the block towards right, then the speed of the block when the deformation in spring is $x,$ will be
As shown in figure there is a spring block system. Block of mass $500\,g$ is pressed against a horizontal spring fixed at one end to compress the spring through $5.0\,cm$ . The spring constant is $500\,N/m$ . When released, calculate the distance where it will hit the ground $4\,m$ below the spring ? $(g = 10\,m/s^2)$
A toy gun fires a plastic pellet with a mass of $0.5\ g$. The pellet is propelled by a spring with a spring constant of $1.25\ N/cm$, which is compressed $2.0\ cm$ before firing. The plastic pellet travels horizontally $10\ cm$ down the barrel (from its compressed position) with a constant friction force of $0.0475\ N$. What is the speed (in $SI\ units$) of the bullet as it emerges from the barrel?
Two bodies $A$ and $B$ of masses $m$ and $2m$ respectively are placed on a smooth floor. They are connected by a spring. A third body $C$ of mass $m$ moves with velocity $V_0$ along the line joining $A$ and $B$ and collides elastically with $A$ as shown in fig. At a certain instant of time $t_0$ after collision, it is found that instantaneous velocities of $A$ and $B$ are the same. Further at this instant the compression of the spring is found to be $x_0$. Determine the spring constant
A block is fastened to a horizontal spring. The block is pulled to a distance $x =10\,cm$ from its equilibrium position (at $x =0$ ) on a frictionless surface from rest. The energy of the block at $x =5$ $cm$ is $0.25\,J$. The spring constant of the spring is $.........Nm ^{-1}$