$A$ block of mass $m$ moving with a velocity $v_0$ on a smooth horizontal surface strikes and compresses a spring of stiffness $k$ till mass comes to rest as shown in the figure. This phenomenon is observed by two observers:

$A$: standing on the horizontal surface

$B$: standing on the block 

To an observer $B$, when the block is compressing the spring

37-559

  • A

    velocity of the block is decreasing

  • B

    retardation of the block is increasing

  • C

    kinetic energy of the block is zero

  • D

    all the above

Similar Questions

The work done in joules in increasing the extension of a spring of stiffness $10\, N/cm$ from $4\, cm$ to $6\, cm$ is:

The length of a spring is a when $\alpha $ force of $4\,N$ is applied on it and the length is $\beta $ when $5\,N$ force is applied. Then the length of spring when $9\,N$ force is applied is

$A$ spring block system is placed on a rough horizontal floor. The block is pulled towards right to give spring an elongation less than $\frac{{2\mu mg}}{K}$ but more than $\frac{{\mu mg}}{K}$ and released.The correct statement is

Write the dimensional formula of $\frac {k}{m}$.

Two masses $m_1 = 2\,kg$ and $m_2 = 5\,kg$ are moving on a frictionless surface with velocities $10\,m/s$ and $3\,m/s$ respectively. An ideal spring is attached on the back of $m_2$ . The maximum compression of the spring will be ............... $\mathrm{m}$