$A$ small block of mass $m$ is placed on $a$ wedge of mass $M$ as shown, which is initially at rest. All the surfaces are frictionless . The spring attached to the other end of wedge has force constant $k$. If $a'$ is the acceleration of $m$ relative to the wedge as it starts coming down and $A$ is the acceleration acquired by the wedge as the block starts coming down, then Maximum velocity of $M$ is:
$\sqrt {2gh} $
$\sqrt {\frac{{2ghm}}{{m + M}}} $
$\sqrt {\frac{{2{m^2}gh}}{{mM + {M^2}}}} $
None
$A$ particle of mass m is constrained to move on $x$ -axis. $A$ force $F$ acts on the particle. $F$ always points toward the position labeled $E$. For example, when the particle is to the left of $E, F$ points to the right. The magnitude of $F$ is a constant $F$ except at point $E$ where it is zero. The system is horizontal. $F$ is the net force acting on the particle. The particle is displaced a distance $A$ towards left from the equilibrium position $E$ and released from rest at $t = 0.$ What is the period of the motion?
A spring with spring constant $k $ is extended from $x = 0$to$x = {x_1}$. The work done will be
Give the example of variable force. Write the formula of Hook’s law.
$A$ spring block system is placed on a rough horizontal floor. The block is pulled towards right to give spring an elongation less than $\frac{{2\mu mg}}{K}$ but more than $\frac{{\mu mg}}{K}$ and released.The correct statement is
Two identical blocks $A$ and $B$, each of mass $'m'$ resting on smooth floor are connected by a light spring of natural length $L$ and spring constant $K$, with the spring at its natural length. $A$ third identical block $'C'$ (mass $m$) moving with a speed $v$ along the line joining $A$ and $B$ collides with $A$. the maximum compression in the spring is