Gujarati
Hindi
6.System of Particles and Rotational Motion
normal

$A$ uniform rod of length $l$, hinged at the lower end is free to rotate in the vertical plane . If the rod is held vertically in the beginning and then released, the angular acceleration of the rod when it makes an angle of $45^o$ with the horizontal ($I = ml^2/3$)

A

$\frac{{3g}}{{2\sqrt 2 \,{\text{l}}}}$

B

$\frac{{6g}}{{\sqrt 2 \,{\text{l}}}}$

C

$\frac{{\sqrt 2 \,g}}{{\text{l}}}$

D

$\frac{{2\,g}}{{\text{l}}}$

Solution

Loss in $P.E.$ $=$ gain in $K.E.$

or $\operatorname{mg} \frac{l}{2}(1-\cos \theta)=\frac{1}{2} \mathrm{I} \omega^{2}$

Differenting both sides,

$\operatorname{mg} \frac{l}{2} \sin \theta \frac{\mathrm{d} \theta}{\mathrm{dt}}=\mathrm{I} \omega \frac{\mathrm{d} \omega}{\mathrm{dt}}$

or $\operatorname{mg} \frac{l}{2} \sin \theta=\mathrm{I} \alpha$

$\therefore \alpha=\frac{\mathrm{mg} \frac{l}{2} \sin 45^{\circ}}{\frac{\mathrm{m} l^{2}}{3}}$

$\alpha=\frac{3 \mathrm{g}}{2 \sqrt{2} l}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.