6.System of Particles and Rotational Motion
medium

A thin uniform rod of length $2\,m$. cross sectional area ' $A$ ' and density ' $d$ ' is rotated about an axis passing through the centre and perpendicular to its length with angular velocity $\omega$. If value of $\omega$ in terms of its rotational kinetic energy $E$ is $\sqrt{\frac{\alpha E}{ Ad }}$ then the value of $\alpha$ is $...........$

A

$2$

B

$1$

C

$4$

D

$3$

(JEE MAIN-2023)

Solution

$( KE )_{\text {Rotational }}=\frac{1}{2} I \omega^2= E$

$E =\frac{1}{2} \frac{ m \ell^2}{12} \omega^2$

$E =\frac{1}{2} \frac{ dA \ell^3}{12} \omega^2$

$E =\frac{ dA (2)^3}{24} \omega^2$

$\sqrt{\frac{3 E }{ dA }}=\omega$

$\alpha=3 \text { Ans. }$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.