$A$ uniform rod of mass $M$ is hinged at its upper end. $A$ particle of mass $m$ moving horizontally strikes the rod at its mid point elastically. If the particle comes to rest after collision find the value of $M/m =?$
$3/4$
$4/3$
$2/3$
none
Starting from the rest, at the same time, a ring, a coin and a solid ball of same mass roll down an incline without slipping .The ratio of their translational kinetic energies at the bottom will be
The $M.I.$ of a body about the given axis is $1.2\,kg \times m^2$ and initially the body is at rest. In order to produce a rotational kinetic energy of $1500\,joule$ an angular acceleration of $25\,rad/sec^2$ must be applied about that axis for a duration of ........ $\sec$.
A ball rolls without slipping. The radius of gyration of the ball about an axis passing through its centre of mass $K$. If radius of the ball be $R$, then the fraction of total energy associated with its rotational energy will be
Write the formula for rotational kinetic energy.
A disc of mass $M$ and radius $R$ rolls in a horizontal surface and then rolls up an inclined plane as shown in the fig. If the velocity of the disc is $v$, the height to which the disc will rise will be..