Gujarati
Hindi
6.System of Particles and Rotational Motion
normal

$A$ uniform rod of mass $M$ is hinged at its upper end. $A$ particle of mass $m$ moving horizontally strikes the rod at its mid point elastically. If the particle comes to rest after collision find the value of $M/m =?$

A

$3/4$

B

$4/3$

C

$2/3$

D

none

Solution

Given, mass of the particle $=$ $m$

Mass of the rod $=M$

Let the length of the rod be $L$

Applying conservation of angular momentum about the hinge, we get

$m v \frac{L}{2}=I \omega$

$m v \frac{{L}}{2}=\frac{M L^{2}}{3} \omega$

$\Rightarrow \omega=\frac{3 m v}{2 M L}$

Applying principle of conservation of energy, we have

$\frac{1}{2} m v^{2}=\frac{1}{2} I \omega^{2}$

$\frac{1}{2} m v^{2}=\frac{1}{2} \times \frac{M L^{2}}{3} \times\left(\frac{3 m v}{2 M L}\right)^{2}$

$\frac{1}{2} m v^{2}=\frac{1}{2} \times \frac{M L^{2}}{3} \times \frac{9 m^{2} v^{2}}{4 M^{2} L^{2}}$

$m v^{2}=\frac{3 m^{2} v^{2}}{4 M}$

$\frac{M}{m}=\frac{3}{4}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.