A solid cylinder $P$ rolls without slipping from rest down an inclined plane attaining a speed $v_p$ at the bottom. Another smooth solid cylinder $Q$ of same mass and dimensions slides without friction from rest down the inclined plane attaining a speed $v_q$ at the bottom. The ratio of the speeds $\frac{v_q}{v_p}$ is
$\sqrt{\frac{3}{4}}$
$\sqrt{\frac{3}{2}}$
$\sqrt{\frac{2}{3}}$
$\sqrt{\frac{4}{3}}$
A rolling wheel of $12 \,kg$ is on an inclined plane at position $P$ and connected to a mass of $3 \,kg$ through a string of fixed length and pulley as shown in figure. Consider $PR$ as friction free surface. The velocity of centre of mass of the wheel when it reaches at the bottom $Q$ of the inclined plane $P Q$ will be $\frac{1}{2} \sqrt{ xgh } \,m / s$. The value of $x$ is.............
A tangential force $F$ is applied on a disc of radius $R$, due to which it deflects through an angle $\theta $ from its initial position. The work done by this force would be
A disc and a ring of same mass are rolling and if their kinetic energies are equal, then the ratio of their velocities will be
A solid sphere is rolling on a horizontal plane without slipping. If the ratio of angular momentum about axis of rotation of the sphere to the total energy of moving sphere is $\pi: 22$ then, the value of its angular speed will be $...........\,rad / s$.
Two discs of same moment of inertia rotating about their regular axis passing through centre and perpendicular to the plane of disc with angular velocities $\omega_1$ and $\omega_2$ They are brought into contact face to face coinciding the axis of rotation. The expression for loss of energy during this process is