Gujarati
6.System of Particles and Rotational Motion
hard

A solid cylinder $P$ rolls without slipping from rest down an inclined plane attaining a speed $v_p$ at the bottom. Another smooth solid cylinder $Q$ of same mass and dimensions slides without friction from rest down the inclined plane attaining a speed $v_q$ at the bottom. The ratio of the speeds $\frac{v_q}{v_p}$ is

A

$\sqrt{\frac{3}{4}}$

B

$\sqrt{\frac{3}{2}}$

C

$\sqrt{\frac{2}{3}}$

D

$\sqrt{\frac{4}{3}}$

(KVPY-2014)

Solution

(b)

In presence of friction, cylinder rolls and by energy conservation, we have

Initial potential energy $=$ Kinetic energy at bottom

$m g h =( KE )_{\text {translation }}+( KE )_{\text {rotation }}$

$=\frac{1}{2} m v^2+\frac{1}{2} I \omega^2$

$=\frac{1}{2} m v^2+\frac{1}{2}\left(\frac{1}{2} m r^2\right) \omega^2$

$=\frac{3}{4} m v^2 \quad[\therefore v=r \omega]$

So, $\quad v_p=\sqrt{\frac{4}{3} g h}$

In absence of friction, cylinder slips without rolling.

Hence, $\frac{1}{2} m v^2=m g h$

$\Rightarrow \quad v_q=\sqrt{2 g h}$

So, ratio of $v_q / v_p=\frac{\sqrt{2 g h}}{\sqrt{\frac{4}{3} g h}}=\sqrt{\frac{3}{2}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.