Gujarati
Hindi
6.System of Particles and Rotational Motion
hard

$A$ ring of mass $m$ is rolling without slipping with linear velocity $v$ as shown is figure. $A$ rod of identical mass is fixed along one of its diameter. The total kinetic energy of the system is :-

A

$\frac{7}{5}m{v^2}$

B

$\frac{2}{5}m{v^2}$

C

$\frac{5}{3}m{v^2}$

D

$\frac{5}{4}m{v^2}$

Solution

$\mathrm{KE}=\frac{1}{2} \mathrm{mV}_{\mathrm{C}}^{2}+\frac{1}{2} \mathrm{I}_{\mathrm{C}} \omega^{2}$

$=\frac{1}{2} \mathrm{mV}^{2}+\frac{1}{2} \mathrm{mR}^{2}\left(\frac{\mathrm{V}^{2}}{\mathrm{R}^{2}}\right)+\frac{1}{2} \mathrm{mV}^{2}+$

$\frac{1}{2} \frac{\mathrm{m}\left(2 \mathrm{R}^{2}\right)}{12} \frac{\mathrm{V}^{2}}{\mathrm{R}^{2}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.