$A$ block of mass $M_1$ is hanged by a light spring of force constant $k$ to the top bar of a reverse Uframe of mass $M_2$ on the floor. The block is pooled down from its equilibrium position by $a$ distance $x$ and then released. Find the minimum value of $x$ such that the reverse $U$ -frame will leave the floor momentarily.
$x = (M_1 + M_2)g/k$
$x = (2M_1 + M_2)g/k$
$x = (M_1 + 2M_2)g/k$
$x = M_1g/k$
Two masses $m_1$ and $m_2$ are suspended together by a massless spring of constant $K$. When the masses are in equilibrium, $m_1$ is removed without disturbing the system. The amplitude of oscillations is
If a spring has time period $T$, and is cut into $n$ equal parts, then the time period of each part will be
The springs shown are identical. When $A = 4kg$, the elongation of spring is $1\, cm$. If $B = 6\,kg$, the elongation produced by it is ..... $ cm$
On a smooth inclined plane, a body of mass $M$ is attached between two springs. The other ends of the springs are fixed to firm supports. If each spring has force constant $K$, the period of oscillation of the body (assuming the springs as massless) is
A spring balance has a scale that reads from $0$ to $50\; kg$. The length of the scale is $20\; cm .$ A body suspended from this balance, when displaced and released, oscillates with a period of $0.6\; s$. What is the weight of the body in $N$?