13.Oscillations
medium

A block of mass $m$ attached to massless spring is performing oscillatory motion of amplitude $'A'$ on a frictionless horizontal plane. If half of the mass of the block breaks off when it is passing through its equilibrium point, the amplitude of oscillation for the remaining system become $fA.$ The value of $f$ is

A

$\frac{1}{2}$

B

$\frac{1}{\sqrt{2}}$

C

$1$

D

$\sqrt{2}$

(JEE MAIN-2020)

Solution

At equilibrium position

$V _{0}=\omega_{0} A =\sqrt{\frac{ K }{ m }} A….(i)$

$V =\omega A '=\sqrt{\frac{ K }{\frac{ m }{2}}} A '…(ii)$

$\therefore \quad A'= \sqrt{2} A$

$P_{i}=P_{f}$

$mV_0=\frac m{2} V$

$m(A \omega)=\frac{m}{2}\left(A^{\prime} \omega^{\prime}\right)$

$m A \sqrt{\frac{k}{m}}=\frac{m}{2} A^{\prime} \sqrt{\frac{k}{m / 2}}$

$m^{2} A^{2}\left[\frac{K}{m}\right]=\frac{m^{2}}{42}\left(A^{\prime}\right)^{2} \frac{k}{m} \times v$

$2 A^{2}=\left(A^{\prime}\right)^{2} \Rightarrow A^{\prime}=\sqrt{2}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.