- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
normal
$A$ and $B$ are two non- singular square matrices of each $3 \times 3$ such that $AB = A$ and $\left| {A + B} \right| \ne 0$, then
A
$\left| {A + B} \right| = 2$
B
$\left| {A + B} \right| = 8$
C
$\left| {A -B} \right| = 1$
D
$\left| {A -B} \right| = 2$
Solution
We have $A^{2}=(A B) A=A(B A)=A B=A$
Similarly $\mathrm{B}^{2}=\mathrm{B}$
$(A+B)^{2}=A^{2}+B^{2}+A B+B A$
$= A+B+A+B=2(A+B) $
$ \Rightarrow|A+B|^{2}=8|A+B| \Rightarrow|A+B|=8 $ and
$(A-B)^{2}=A^{2}+B^{2}-A B-B A=A+B-A-B=0 $
$\Rightarrow|A-B|=0 $
Standard 12
Mathematics
Similar Questions
normal