$\left( { \sim \left( {p \vee q} \right)} \right) \vee \left( { \sim p \wedge q} \right)$ is logically equivalent to
$ \sim p$
$p$
$q$
$ \sim q$
Consider the statement "The match will be played only if the weather is good and ground is not wet". Select the correct negation from the following:
Let $p$ and $q $ stand for the statement $"2 × 4 = 8" $ and $"4$ divides $7"$ respectively. Then the truth value of following biconditional statements
$(i)$ $p \leftrightarrow q$
$(ii)$ $~ p \leftrightarrow q$
$(iii)$ $~ q \leftrightarrow p$
$(iv)$ $~ p \leftrightarrow ~ q$
Negation of statement "If I will go to college, then I will be an engineer" is -
If $\left( {p \wedge \sim q} \right) \wedge \left( {p \wedge r} \right) \to \sim p \vee q$ is false, then the truth values of $p, q$ and $r$ are respectively
$(p \to q) \leftrightarrow (q\ \vee \sim p)$ is