Mathematical Reasoning
medium

Consider the two statements :

$(\mathrm{S} 1):(\mathrm{p} \rightarrow \mathrm{q}) \vee(\sim \mathrm{q} \rightarrow \mathrm{p})$ is a tautology

$(S2): (\mathrm{p} \wedge \sim \mathrm{q}) \wedge(\sim \mathrm{p} \vee \mathrm{q})$ is a fallacy.

Then :

A

only $(S1)$ is true.

B

both $(S1)$ and $(S2)$ are false.

C

both $(S1)$ and $(S2)$ are true.

D

only $(S2)$ is true.

(JEE MAIN-2021)

Solution

$S_{1}:(\sim p \vee q) \vee(q \vee p)=(q \vee \sim p) \vee(q \vee p)$

$S_{1}=q \vee(\sim p \vee p)=q v t=t=$ tautology

$S_{2}:(p \wedge \sim q) \wedge(\sim p \vee q)=(p \wedge \sim q) \wedge \sim(p \wedge \sim q)=C$

$=\text { fallacy }$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.