A $100 \,g$ mass stretches a particular spring by $9.8 \,cm$, when suspended vertically from it. ....... $g$ large a mass must be attached to the spring if the period of vibration is to be $6.28 \,s$.

  • A

    $1000$

  • B

    $10^5$

  • C

    $10^7$

  • D

    $10^4$

Similar Questions

Two small bodies of mass of $2\, kg$ each attached to each other using a thread of length $10\, cm$, hang on a spring whose force constant is $200\, N/m$, as shown in the figure. We burn the thread. What is the distance between the two bodies when the top body first arrives at its highest position .... $cm$ ? (Take $\pi^2 = 10$)

What provides the restoring force in the following cases ?

$(1)$ Compressed spring becomes force for oscillation.

$(2)$ Displacement of water in $U\,-$ tube,

$(3)$ Displacement of pendulum bob from mean position.

In the reported figure, two bodies $A$ and $B$ of masses $200\, {g}$ and $800\, {g}$ are attached with the system of springs. Springs are kept in a stretched position with some extension when the system is released. The horizontal surface is assumed to be frictionless. The angular frequency will be $.....\,{rad} / {s}$ when ${k}=20 \,{N} / {m} .$

  • [JEE MAIN 2021]

As per given figures, two springs of spring constants $K$ and $2\,K$ are connected to mass $m$. If the period of oscillation in figure $(a)$ is $3 s$, then the period of oscillation in figure $(b)$ will be $\sqrt{ x }$ s. The value of $x$ is$.........$

  • [JEE MAIN 2022]

How the period of oscillation depend on the mass of block attached to the end of spring ?