જો કોઈ સ્પ્રિંગને $100 \,g$ દળ $9.8$ સેમી જેટલી ખેંચી શકે છે. જ્યારે તેને ઊર્ધ્વ દિશામાં લટકાવેલી હોય. જો $6.28 \,s$ નો આવર્તકાળ ધરાવતી ગતી કરવાની હોય તો તેની સાથે હવે ............ $g$ દળ ઉમેરવું જોઈએ.
$1000$
$10^5$
$10^7$
$10^4$
k બળ અચળાંક ધરાવતી સ્પ્રિગ સાથે દળ $m$ જોડવામાં આવેલ છે અને તે મુજબ સપાટી જોડેલ છે.અને તે આકૃતિ મુજબ સપાટી જોડેલ બીજી સ્પ્રિંગને અડે છે. નાના દોલનોનો આવર્તકાળ કેટલો થાય?
આપેલ તંત્ર માટે $m$ દળના પદાર્થની આવૃત્તિ કેટલી થાય?
આકૃતિમાં દર્શાવ્યા પ્રમાણે $m = 1.0\,kg$ નો પદાર્થ જમીન સાથે જડિત સ્પ્રિંગની ઉપર રહેલ પ્લેટફોર્મ પર મૂકવામાં આવે છે.સ્પ્રિંગ અને પ્લેટફોર્મનું દળ નહિવત છે. જો સ્પ્રિંગને થોડીક દબાવીને મુક્ત કરવામાં આવે તો તે સરળ આવર્ત ગતિ કરે છે. સ્પ્રિંગનો બળ અચળાંક $500\,N/m$ છે. આ ગતિ માટે કંપવિસ્તાર $A$ કેટલો હોવો જોઈએ કે જેથી $m$ દળ પ્લેટફોર્મથી છૂટો પડે?
($g = 10\,m/s^2$ અને ગતિ દરમિયાન સ્પ્રિંગ વિકૃત થતી નથી)
અવગણ્ય દળ ધરાવતી સ્પ્રિંગ સાથે $M$ દળ લટકાવેલ છે. જ્યારે તેને ખોદુક ખેચીને મુક્ત કરવામાં આવે ત્યારે તે $T$ આવર્તકાળવાળી સરળ આવર્તગતિ કરે છે.જો દળમાં $m$ નો વઘારો કરવામાં આવે છે, તો આવર્તકાળ $ \frac{{5T}}{3} $ થાય છે,તો $ \frac{m}{M} $નો ગુણોત્તર કેટલો હશે?
$K$ બળ અચળાંક ધરાવતી સ્પ્રિંગ પર એક પદાર્થ આકૃતિમાં દર્શાવ્યા મુજબ છે. તેની ગતિનું સમીકરણ $x(t)= A sin \omega t+ Bcos\omega t$, જ્યાં $\omega=\sqrt{\frac{K}{m}}$ છે. $t=0$ સમયે દળનું સ્થાન $x(0)$ અને વેગ $v(0)$ હોય, તો સ્થાનાંતરને $x(t)=C \cos (\omega t-\phi)$ મુજબ આપવામાં આવે છે, જ્યાં $C$ અને $\phi$ કેટલા હશે?