A ball of mass $M$ falls from a height $h$ on a floor which the coefficient of restitution is $e$. The height attained by the ball after two rebounds is
$e^2h$
$e{h^2}$
$e^4h$
$\frac{h}{{{e^4}}}$
Power supplied to a particle of mass $2\, kg$ varies with time as $P = \frac{{3{t^2}}}{2}$ $watt$ . Here, $t$ is in $seconds$ . If velocity of particle at $t = 0$ is $v = 0$, the velocity of particle at time $t = 2s$ will be ............. $\mathrm{m}/ \mathrm{s}$
A body of mass $m$ is moving in a circle of radius $r$ with a constant speed $v$. The force on the body is $\frac{{m{v^2}}}{r}$ and is directed towards the centre. What is the work done by this force in moving the body over half the circumference of the circle
A force of $\left( {2\widehat i + 3\widehat j + 4\widehat k} \right)\,N$ acts on a body for $4\, sec$ and produces a displacement of $\left( {3\widehat i + 4\widehat j + 5\widehat k} \right)\,m$. The power used is :- ............... $\mathrm{W}$
Two blocks $A$ and $B$ of masses $1\, kg$ and $2\, kg$ are connected together by a spring and are resting on a horizontal surface. The blocks are pulled apart so as to strech the spring and then released. The ratio of $K.E.s$ of both the blocks is
If the potential energy of a gas molecule is $U = \frac{M}{{{r^6}}} - \frac{N}{{{r^{12}}}},M$ and $N$ being positive constants, then the potential energy at equilibrium must be