A ball rolls off the top of a stairway with horizontal velocity $\mathrm{u}$. The steps are $0.1 \mathrm{~m}$ high and $0.1 \mathrm{~m}$ wide. The minimum velocity $\mathrm{u}$ with which that ball just hits the step $5$ of the stairway will be $\sqrt{\mathrm{x}} \mathrm{ms}^{-1}$ where $\mathrm{x}=$___________ [use $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2$ ].
$1$
$2$
$3$
$4$
A body of mass $2\; kg$ has an initial velocity of $3 \;m / s$ along $OE$ and it is subjected to a force of $4$ newtons in $OF$ direction perpendicular to $OE$. The distance of the body from $O$ after $4 \;seconds$ will be
A man projects a coin upwards from the gate of a uniformly moving train. The path of coin for the man will be
A mouse jumps off from the $15$ th floor of a high-rise building and lands $12 \,m$ from the building. Assume that, each floor is of $3 \,m$ height. The horizontal speed with which the mouse jumps is closest to ...............$km /h$
A ball is dropped from a height of $49\,m$. The wind is blowing horizontally. Due to wind a constant horizontal acceleration is provided to the ball. Choose the correct statement (s). (Take $g=9.8\,m / s ^2$ )