A balloon filled with helium rises against gravity increasing its potential energy. The speed of the balloon also increases as it rises. How do you reconcile this with the law of conservation of mechanical energy ? You can neglect viscous drag of air and assume that density of air is constant.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$m=$ Mass of balloon

$\mathrm{V}=$ Volume of balloon

$\rho_{\mathrm{He}}=$ Density of helium

$\rho_{\text {air }}=$ Density of air

Volume $\mathrm{V}$ of balloon displaces volume $\mathrm{V}$ of air.

So, $\mathrm{V}\left(\rho_{\mathrm{air}}-\rho_{\mathrm{He}}\right) \mathrm{g}=m a=m \frac{d v}{d t}$

Integrating with respect to $t$,

$\Rightarrow \mathrm{V}\left(\rho_{\mathrm{air}}-\rho_{\mathrm{He}}\right) g t=m v$

$\frac{1}{2} m v^{2}=\frac{1}{2} m \frac{\mathrm{V}^{2}}{m^{2}}\left(\rho_{\mathrm{air}}-\rho_{\mathrm{He}}\right)^{2} g^{2} t^{2} \ldots \text { (ii) }$

$=\frac{1}{2 m} \mathrm{~V}^{2}\left(\rho_{\mathrm{air}}-\rho_{\mathrm{He}}\right)^{2} g^{2} t^{2}$

If the balloon rises to a height $\mathrm{h}$,

from $\mathrm{s}=u t+\frac{1}{2} a t^{2}$

$\therefore h=\frac{1}{2} a t^{2}$

$=\frac{1}{2} \frac{\mathrm{V}\left(\rho_{\text {air }}-\rho_{\mathrm{He}}\right)}{m} g t^{2} \quad(\because u=0)$

From $(iii)$ and $(ii)$

$\begin{aligned} \frac{1}{2} m v^{2} =\left[\mathrm{V}\left(\rho_{\mathrm{a}}-\rho_{\mathrm{He}}\right) g t^{2}\left[\frac{1}{2 \mathrm{~m}} \mathrm{~V}\left(\rho_{\mathrm{air}}-\rho_{\mathrm{He}}\right) g t^{2}\right]\right.\\ =\mathrm{V}\left(\rho_{\mathrm{a}}-\rho_{\mathrm{He}}\right) g h \end{aligned}$

Similar Questions

A bullet hits and gets embedded in a solid block resting on a horizontal frictionless table. What is conserved ?

A light spring of length $20\, cm$ and force constant $2\, kg/cm$ is placed vertically on a table. A small block of mass $1\, kg$. falls on it. The length $h$ from the surface of the table at which the ball will have the maximum velocity is ............... $\mathrm{cm}$

A body falls towards earth in air. Will its total mechanical energy be conserved during the fall ? Justify.

In an elastic collision of two billiard balls, which of the following quantities remain conserved during the short time of collision of the balls ? (i.e. when they are in contact)

$(a)$ Kinetic energy.

$(b)$ Total linear momentum.

Give reason for your answer in each case.

Write the law of conservation of total linear momentum for the system of particle.