A bar magnet having centre $O$ has a length of $4 $ $cm. $ Point $P_1$ is in the broad side-on and $P_2 $ is in the end side-on position with $OP_1 = OP_2 = 10$ metres. The ratio of magnetic intensities $H$ at $P_1$ and $P_2$ is

  • A

    ${H_1}:{H_2} = 16:100$

  • B

    ${H_1}:{H_2} = 1:2$

  • C

    ${H_1}:{H_2} = 2:1$

  • D

    ${H_1}:{H_2} = 100:16$

Similar Questions

Of the following Fig., the lines of magnetic induction due to a magnet $SN$, are given by

  • [AIIMS 2012]

Two short magnets of equal dipole moments $M $ are fastened perpendicularly at their centre (figure). The magnitude of the magnetic field at a distance $d $ from the centre on the bisector of the right angle is

Two magnets $A$ and $B $ are identical and these are arranged as shown in the figure. Their length is negligible in comparison to the separation between them. A magnetic needle is placed between the magnets at point $P$ which gets deflected through an angle $\theta $ under the influence of magnets. The ratio of distance ${d_1}$ and ${d_2}$ will be

Two magnets of equal mass are joined at right angles to each other as shown the magnet $1$ has a magnetic moment $3 $ times that of magnet $2$. This arrangement is pivoted so that it is free to rotate in the horizontal plane. In equilibrium what angle will the magnet $1$ subtend with the magnetic meridian

Two identical bar magnets with a length $10 \,cm $ and weight $50 \,gm$-weight are arranged freely with their like poles facing in a inverted vertical glass tube. The upper magnet hangs in the air above the lower one so that the distance between the nearest pole of the magnet is $3\,mm.$ Pole strength of the poles of each magnet will be.......$ amp × m$