A block $'A'$ of mass $M$ moving with speed $u$ collides elastically with block $B$ of mass $m$ which is connected to block $C$ of mass $m$ with a spring. When the compression in spring is maximum the velocity of block $C$ with respect to block $A$ is (neglect friction)
Zero
$\frac {M}{M\,+\,m}u$
$\left( {\frac{m}{{M + m}}} \right)u$
$\frac {m}{M}u$
$A$ block of mass $m$ moving with a velocity $v_0$ on a smooth horizontal surface strikes and compresses a spring of stiffness $k$ till mass comes to rest as shown in the figure. This phenomenon is observed by two observers:
$A$: standing on the horizontal surface
$B$: standing on the block To an observer
$A$, the work done by the normal reaction $N$ between the block and the spring on the block is
The $P.E.$ of a certain spring when stretched from natural length through a distance $0.3\, m$ is $10\, J$. The amount of work in joule that must be done on this spring to stretch it through an additional distance $0.15\, m$ will be ................ $\mathrm{J}$
Two block of masses $m_1$ and $m_2$ connected with the help of a spring of spring constant $k$ initially to natural length as shown. A sharp impulse is given to mass $m_2$ so that it acquires a velocity $v_0$ towards right. If the system is kept an smooth floor then find the maximum elongation that the spring will suffer
A spring of spring constant $ 5 \times 10^3$ $ N/m$ is stretched initially by $5\,cm$ from the unstretched position. Then the work required to stretch it further by another $5\,cm$ is .............. $\mathrm{N-m}$
Draw a plots of mechanical energy, potential energy and kinetic energy versus displacement for different position of a motion of a block attached to a spring.