Gujarati
Hindi
5.Work, Energy, Power and Collision
hard

A smooth semicircular tube $AB$ of radius $R$ is fixed in a verticle plane and contain a heavy flexible chain of length $\pi R$ . Find the velocity $v$ with which it will emerge from the open end $'B'$ of' tube, when slightly displaced

A

$\sqrt {2gR\left( {2\pi \, + \,2/\pi } \right)} $

B

$\sqrt {\frac{{gR}}{2}\left( {\frac{\pi }{4} + 4\pi } \right)} $

C

$\sqrt {2gR\left( {\frac{2}{\pi } + \frac{\pi }{2}} \right)} $

D

$\sqrt {gR\left( {\pi  + \frac{1}{\pi }} \right)} $

Solution

Conservation of mechanical energy

$\mathrm{KEi}+\mathrm{PEi}=\mathrm{KEf}+\mathrm{PEf}$

$\mathrm{O}+\mathrm{Mg} \frac{2 \mathrm{R}}{\pi}=\frac{1}{2} \mathrm{Mv}^{2}+\left(-\mathrm{Mg} \frac{\pi \mathrm{R}}{2}\right)$

$\operatorname{MgR}\left(\frac{2}{\pi}+\frac{\pi}{2}\right)=\frac{1}{2} M v^{2}$

$v=\sqrt{2 g R\left(\frac{2}{\pi}+\frac{\pi}{2}\right)}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.