A smooth semicircular tube $AB$ of radius $R$ is fixed in a verticle plane and contain a heavy flexible chain of length $\pi R$ . Find the velocity $v$ with which it will emerge from the open end $'B'$ of' tube, when slightly displaced

821-20

  • A

    $\sqrt {2gR\left( {2\pi \, + \,2/\pi } \right)} $

  • B

    $\sqrt {\frac{{gR}}{2}\left( {\frac{\pi }{4} + 4\pi } \right)} $

  • C

    $\sqrt {2gR\left( {\frac{2}{\pi } + \frac{\pi }{2}} \right)} $

  • D

    $\sqrt {gR\left( {\pi  + \frac{1}{\pi }} \right)} $

Similar Questions

Two springs have their force constant as $k_1$ and $k_2 (k_1 > k_2)$. when they are  stretched by the same force

A body of mass $1\,kg$ falls freely from a height of $100\,m,$ on a platform of mass $3\,kg$ which is mounted on a spring having spring constant $k = 1.25 \times 10^6\, N/m.$ The body sticks to the platform and the spring’s maximum compression is found to be $x.$ Given that $g = 10\,ms^{-2},$ the value of $x$ will be close to ................ $\mathrm{cm}$

  • [JEE MAIN 2019]

Two bodies $A$ and $B$ of mass $m$ and $2\, m$ respectively are placed on a smooth floor. They are connected by a spring of negligible mass. $A$ third body $C$ of mass $m$ is placed on the floor. The body $C$ moves with a velocity $v_0$ along the line joining $A$ and $B$ and collides elastically with $A$. At a certain time after the collision it is found that the instantaneous velocities of $A$ and $B$ are same and the compression of the spring is $x_0$. The spring constant $k$ will be

  • [AIEEE 2012]

A block of mass $m$ is pushed against a spring whose spring constant is $k$ fixed at one end with a wall. The block can slide on a frictionless table as shown in figure. If the natural length of spring is $L_0$ and it is compressed to half its length when the block is released, find the velocity of the block, when the spring has natural length

A block of mass $\sqrt{2}\,kg$ is released from the top of an inclined smooth surface as shown in figure. If spring constant of spring is $100\,N / m$ and block comes to rest after compressing the spring by $1 \,m$, then the distance travelled by block before it comes to rest is ......... $m$