- Home
- Standard 11
- Physics
A smooth semicircular tube $AB$ of radius $R$ is fixed in a verticle plane and contain a heavy flexible chain of length $\pi R$ . Find the velocity $v$ with which it will emerge from the open end $'B'$ of' tube, when slightly displaced

$\sqrt {2gR\left( {2\pi \, + \,2/\pi } \right)} $
$\sqrt {\frac{{gR}}{2}\left( {\frac{\pi }{4} + 4\pi } \right)} $
$\sqrt {2gR\left( {\frac{2}{\pi } + \frac{\pi }{2}} \right)} $
$\sqrt {gR\left( {\pi + \frac{1}{\pi }} \right)} $
Solution
Conservation of mechanical energy
$\mathrm{KEi}+\mathrm{PEi}=\mathrm{KEf}+\mathrm{PEf}$
$\mathrm{O}+\mathrm{Mg} \frac{2 \mathrm{R}}{\pi}=\frac{1}{2} \mathrm{Mv}^{2}+\left(-\mathrm{Mg} \frac{\pi \mathrm{R}}{2}\right)$
$\operatorname{MgR}\left(\frac{2}{\pi}+\frac{\pi}{2}\right)=\frac{1}{2} M v^{2}$
$v=\sqrt{2 g R\left(\frac{2}{\pi}+\frac{\pi}{2}\right)}$