A block $B$ is placed on block $A$. The mass of block $B$ is less than the mass of block $A$. Friction exists between the blocks, whereas the ground on which the block $A$ is placed is taken to be smooth. $A$ horizontal force $F$, increasing linearly with time begins to act on $B$. The acceleration ${a_A}$ and ${a_B}$ of blocks $A$ and $B$ respectively are plotted against $t$. The correctly plotted graph is

535-1

  • A
    535-a1
  • B
    535-b1
  • C
    535-c1
  • D
    535-d1

Similar Questions

A uniform rope of mass $1.0\, kg$ is connected with a box of mass $2.0\, kg$, which is placed on a smooth horizontal surface. The free end of the rope is pulled horizontally by a force $6\, N$. Find the tension at the midpoint of the rope ....... $N$

A wooden block of mass $5 \mathrm{~kg}$ rests on soft horizontal floor. When an iron cylinder of mass $25$ $\mathrm{kg}$ is placed on the top of the block, the floor yields and the block and the cylinder together go down with an acceleration of $0.1 \mathrm{~ms}^{-2}$. The action force of the system on the floor is equal to:

  • [JEE MAIN 2024]

$T_1$ and $T_2$ in the given figure are

Two masses of $5\, kg$ and $3\, kg$ are suspended with the help of massless inextensible strings as shown in figure. The whole system is going upwards with an acceleration of $2\, ms^{-2}$. The tensions $T_1$ and $T_2$ are respectively (Take $g = 10\, ms^{-2}$)

Two bodies $A$ and $B$ of masses $10\,\, kg$ and $15\, kg$ respectively kept on a smooth, horizontal surface are tied to the ends of a light string. If $T$ represents the tension in the string when a horizontal force $F = 500\, N$ is applied to $A$ (as shown in figure $1$) and $T'$ be the tension when it is applied to $B$ (figure $2$), then which of the following is true