- Home
- Standard 11
- Physics
A bob of mass ' $m$ ' is suspended by a light string of length ' $L$ '. It is imparted a minimum horizontal velocity at the lowest point $A$ such that it just completes half circle reaching the top most position B. The ratio of kinetic energies $\frac{(\text { K.E. })_A}{(\text { K.E. })_B}$ is:

$3:2$
$5:1$
$2:5$
$1:5$
Solution
Apply energy conservation between $A$ & $B$
$ \frac{1}{2} \mathrm{mV}_{\mathrm{L}}^2=\frac{1}{2} \mathrm{mV}_{\mathrm{H}}^2+\mathrm{mg}(2 \mathrm{~L}) $
$ \because \mathrm{V}_{\mathrm{L}}=\sqrt{5 \mathrm{gL}}$
So, $\mathrm{V}_{\mathrm{H}}=\sqrt{\mathrm{gL}}$
$\frac{(\mathrm{K} . \mathrm{E})_{\mathrm{A}}}{(\mathrm{K} . \mathrm{E})_{\mathrm{B}}}=\frac{\frac{1}{2} \mathrm{~m}(\sqrt{5 \mathrm{gL}})^2}{\frac{1}{2} \mathrm{~m}(\sqrt{\mathrm{gL}})^2}=\frac{5}{1}$