A body is moving under the action of two forces ${\vec F_1} = 2\hat i - 5\hat j\,;\,{\vec F_2} = 3\hat i - 4\hat j$. Its velocity will become uniform under an additional third force ${\vec F_3}$ given by
$5\hat i - \hat j$
$-5\hat i - \hat j$
$5\hat i + \hat j$
$-5\hat i + 9\hat j$
The sum of two forces acting at a point is $16\, N.$ If the resultant force is $8\, N$ and its direction is perpendicular to minimum force then the forces are
The five sides of a regular pentagon are represented by vectors $A _1, A _2, A _3, A _4$ and $A _5$, in cyclic order as shown below. Corresponding vertices are represented by $B _1, B _2, B _3, B _4$ and $B _5$, drawn from the centre of the pentagon.Then, $B _2+ B _3+ B _4+ B _5$ is equal to
A particle has displacement of $12 \,m$ towards east and $5 \,m$ towards north then $6 \,m $ vertically upward. The sum of these displacements is........$m$
The resultant of these forces $\overrightarrow{O P}, \overrightarrow{O Q}, \overrightarrow{O R}, \overrightarrow{O S}$ and $\overrightarrow{{OT}}$ is approximately $\ldots \ldots {N}$.
[Take $\sqrt{3}=1.7, \sqrt{2}=1.4$ Given $\hat{{i}}$ and $\hat{{j}}$ unit vectors along ${x}, {y}$ axis $]$
If the resultant of $n$ forces of different magnitudes acting at a point is zero, then the minimum value of $n$ is