Two forces each numerically equal to $10$ $dynes$ are acting as shown in the adjoining figure, then the magnitude of resultant is.........$dyne$
$10$
$20$
$10\sqrt 3$
$5$
A body is moving under the action of two forces ${\vec F_1} = 2\hat i - 5\hat j\,;\,{\vec F_2} = 3\hat i - 4\hat j$. Its velocity will become uniform under an additional third force ${\vec F_3}$ given by
When $n$ vectors of different magnitudes are added, we get a null vector. Then the value of $n$ cannot be
Let $\overrightarrow C = \overrightarrow A + \overrightarrow B$
$(A)$ It is possible to have $| \overrightarrow C | < | \overrightarrow A |$ and $ | \overrightarrow C | < | \overrightarrow B|$
$(B)$ $|\overrightarrow C |$ is always greater than $|\overrightarrow A |$
$(C)$ $|\overrightarrow C |$ may be equal to $|\overrightarrow A | + |\overrightarrow B|$
$(D)$ $|\overrightarrow C |$ is never equal to $|\overrightarrow A | + |\overrightarrow B|$
Which of the above is correct
Two forces $\vec{F}_1$ and $\vec{F}_2$ are acting on a body. One force has magnitude thrice that of the other force and the resultant of the two forces is equal to the force of larger magnitude. The angle between $\vec{F}_1$ and $\overrightarrow{\mathrm{F}}_2$ is $\cos ^{-1}\left(\frac{1}{\mathrm{n}}\right)$. The value of $|\mathrm{n}|$ is__________.
Explain commutative law for vector addition.