Two forces each numerically equal to $10$ $dynes$ are acting as shown in the adjoining figure, then the magnitude of resultant is.........$dyne$

817-1171

  • A

    $10$

  • B

    $20$

  • C

    $10\sqrt 3$ 

  • D

    $5$ 

Similar Questions

Given $a+b+c+d=0,$ which of the following statements eare correct:

$(a)\;a, b,$ c, and $d$ must each be a null vector,

$(b)$ The magnitude of $(a+c)$ equals the magnitude of $(b+d)$

$(c)$ The magnitude of a can never be greater than the sum of the magnitudes of $b , c ,$ and $d$

$(d)$ $b + c$ must lie in the plane of $a$ and $d$ if $a$ and $d$ are not collinear, and in the line of a and $d ,$ if they are collinear ?

A body is moving under the action of two forces ${\vec F_1} = 2\hat i - 5\hat j\,;\,{\vec F_2} = 3\hat i - 4\hat j$. Its velocity will become uniform under an additional third force ${\vec F_3}$ given by

$ABC$ is an equilateral triangle. Length of each side is $a$ and centroid is point $O$. Find $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=.......$

The five sides of a regular pentagon are represented by vectors $A _1, A _2, A _3, A _4$ and $A _5$, in cyclic order as shown below. Corresponding vertices are represented by $B _1, B _2, B _3, B _4$ and $B _5$, drawn from the centre of the pentagon.Then, $B _2+ B _3+ B _4+ B _5$ is equal to

  • [KVPY 2009]

 $\overrightarrow A \, = \,3\widehat i\, + \,2\widehat j$ , $\overrightarrow B \, = \widehat {\,i} + \widehat j - 2\widehat k$  then find their addition by algebric method.